OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Further Pure Mathematics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x}=x \tag{5}
\end{equation*}
$$

giving y in terms of x in your answer.

2 The set $S=\{a, b, c, d\}$ under the binary operation $*$ forms a group G of order 4 with the following operation table.

$*$	a	b	c	d
a	d	a	b	c
b	a	b	c	d
c	b	c	d	a
d	c	d	a	b

(i) Find the order of each element of G.
(ii) Write down a proper subgroup of G.
(iii) Is the group G cyclic? Give a reason for your answer.
(iv) State suitable values for each of a, b, c and d in the case where the operation $*$ is multiplication of complex numbers.

3 The planes Π_{1} and Π_{2} have equations $\mathbf{r} \cdot(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})=1$ and $\mathbf{r} \cdot(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k})=3$ respectively. Find
(i) the acute angle between Π_{1} and Π_{2}, correct to the nearest degree,
(ii) the equation of the line of intersection of Π_{1} and Π_{2}, in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.

4 In this question, give your answers exactly in polar form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(i) Express $4((\sqrt{ } 3)-i)$ in polar form.
(ii) Find the cube roots of $4((\sqrt{ } 3)-i)$ in polar form.
(iii) Sketch an Argand diagram showing the positions of the cube roots found in part (ii). Hence, or otherwise, prove that the sum of these cube roots is zero.

5 The lines l_{1} and l_{2} have equations

$$
\frac{x-5}{1}=\frac{y-1}{-1}=\frac{z-5}{-2} \quad \text { and } \quad \frac{x-1}{-4}=\frac{y-11}{-14}=\frac{z-2}{2}
$$

(i) Find the exact value of the shortest distance between l_{1} and l_{2}.
(ii) Find an equation for the plane containing l_{1} and parallel to l_{2} in the form $a x+b y+c z=d$.

6 The set S consists of all non-singular 2×2 real matrices \mathbf{A} such that $\mathbf{A Q}=\mathbf{Q A}$, where

$$
\mathbf{Q}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

(i) Prove that each matrix \mathbf{A} must be of the form $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$.
(ii) State clearly the restriction on the value of a such that $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ is in S.
(iii) Prove that S is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.)

7 (i) Prove that if $z=\mathrm{e}^{\mathrm{i} \theta}$, then $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$.
(ii) Express $\cos ^{6} \theta$ in terms of cosines of multiples of θ, and hence find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{3} \pi} \cos ^{6} \theta \mathrm{~d} \theta \tag{8}
\end{equation*}
$$

8 (i) Find the value of the constant k such that $y=k x^{2} \mathrm{e}^{-2 x}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=2 \mathrm{e}^{-2 x} . \tag{4}
\end{equation*}
$$

(ii) Find the solution of this differential equation for which $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
(iii) Use the differential equation to determine the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0$. Hence prove that $0<y \leqslant 1$ for $x \geqslant 0$.

